A super-resolution reconstruction algorithm for hyperspectral images
نویسندگان
چکیده
The spatial resolution of a hyperspectral image is often coarse because of the limitations of the imaging hardware. Super-resolution reconstruction (SRR) is a promising signal post-processing technique for hyperspectral image resolution enhancement. This paper proposes a maximum a posteriori (MAP) based multi-frame super-resolution algorithm for hyperspectral images. Principal component analysis (PCA) is utilized in both parts of the proposed algorithm: motion estimation and image reconstruction. A simultaneous motion estimation method with the first few principal components, which contain most of the information of a hyperspectral image, is proposed to reduce computational load and improve motion field accuracy. In the image reconstruction part, different image resolution enhancement techniques are applied to different groups of components, to reduce computational load and simultaneously remove noise. The proposed algorithm is tested on both synthetic images and real image sequences. The experimental results and comparative analyses verify the effectiveness of this algorithm. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Hyperspectral Imagery Super-Resolution by Spatial–Spectral Joint Nonlocal Similarity
Hyperspectral (HS) super-resolution reconstruction is an ill-posed inversion problem, for which the solution from reconstruction constraint is not unique. To address this, an HS image super-resolution method is proposed to first utilize the joint regulation of spatial and spectral nonlocal similarities. We then fused the HS and panchromatic images with sparse regulation. With these two regulati...
متن کاملHyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network
Hyperspectral images are well-known for their fine spectral resolution to discriminate different materials. However, their spatial resolution is relatively low due to the trade-off in imaging sensor technologies, resulting in limitations in their applications. Inspired by recent achievements in convolutional neural network (CNN) based super-resolution (SR) for natural images, a novel three-dime...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملHyperspectral Imagery Super-Resolution by Adaptive POCS and Blur Metric
The spatial resolution of a hyperspectral image is often coarse as the limitations on the imaging hardware. A novel super-resolution reconstruction algorithm for hyperspectral imagery (HSI) via adaptive projection onto convex sets and image blur metric (APOCS-BM) is proposed in this paper to solve these problems. Firstly, a no-reference image blur metric assessment method based on Gabor wavelet...
متن کاملSparse Spatio-spectral Representation for Hyperspectral Image Super-resolution
Existing hyperspectral imaging systems produce low spatial resolution images due to hardware constraints. We propose a sparse representation based approach for hyperspectral image super-resolution. The proposed approach first extracts distinct reflectance spectra of the scene from the available hyperspectral image. Then, the signal sparsity, non-negativity and the spatial structure in the scene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 92 شماره
صفحات -
تاریخ انتشار 2012